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Abstr_

Recently e_rgi_ methodology for optimal design of air-
craft treated as a system of in_ physical phenomena
and par_ m emmined. The me_odolo_ is found to coa-
lasceintomethods forhierarchic,non-hierarchic,sad hybrid

systems, all dep,mdent on sensitivity analysis. A separate
of_ has ,ko evolved independent of semi-

tivRy ,nslym, hence emitab]e for discrete problems. Refer-
_ces ,nd numericalappl/cstiom are cited. Musiwly per-

¢x)mputerprocem_ ismen ssenshii_ technologyfor

prsctical implementation of the methodology.

" By _ue of the phy_ involved, an airm_ is a sy_
tern whose behavior is a resultant of complex interactions
among many different physical phenomena and hardware
¢amponmm. Trad/tioually, designem =eated vehicles ex-
hibiting the desh_l behavior by relying on judgment and
intoition, combined with mcp_.ence and smtistim, in ma-
nipulating dmi_ variables, and theyresortedtosuslysisfor

guidance and ver_cstion. Plots limited to 3 or 4 dimensions
wm-e the favorite means for vkuali_tion of the q'_mtitstive
l_o_ In the 1_ _ decades, amilshil_ of digital
computers increased the role d amdym e a guide to the de-
sign_ andledtothemmdllyin_ uaeofformaa
optimiz_on methods as tools for detennin_ the values of
deqn zwiablm.

The esMy s_'tem.pts of simply connecting a design space
assrch prosmm w_h a ast of mmlysk prosrams proved m-
adequate but they i_pimd developn_t of a number of
sl_ tJu_ cun_tJy haw crymllimd in a few um-
_, _ dtm_mt ,ppm,d_: X) d_mp_on of
pmbkm into _ subpmbleme coupled in, bm'a_,
_-_ = _brid mmm_, 2) ssnmm_ a popu_

Of=IM _ and eub_ rc to ,_
p_em _ m the Darwtu_m rome oft-Se_ of

the 8._; _ 3) _ a number _ tziat
rations strate_ical!y placed in the dasi_ spsce by a hyper-
surf_e to be nmnerically _ for opthnu_ All these
approaches tend to strain the premmt compute_ technology
to the limit. However, the recent trendin that teclmolo_y
tow_ni ummively parallel processin_ is coming just in time
to pcovide meam for their _ implementation.

The _ of the pape_ is to n_i_ t_ e_unial fe_-
tu_ ofth_ ,bow _noach_ to the problem of optimal
dasi_ of the aim_ optimimtion, l_vi_ dstaik to a mn-
ple of _ cited without am_nVan_ a comprehensive
lltam_ survey. The review emphasizes the methods pur-
sued ,_ the _s orlpmimtiou at the NASA Langley Re.
search Center, including the d_cip]inm'y and system sensi-
tivity mudyees that ,re the fonndatic_ of the _ of the
above thrm spproaches. The reviewisilh_mt_ by nu-
_.._ emnp_ mleet_ _om tim _ _
mxmmul_ted to dat_ It k an updam on the previous such

two reviews, refs. 1 sad 2, presented to ICAS in 1984 and
1988.

Data Flow Determines Decomposition Scheme

One may partition the numerical task of supporting the
design prooms in a number of di_erent ways. For egmm-
ple,the partitions (subtssks)may correspondtoenSineeri_
disciplines,physicslcomponents ofthe vehicle,_r orga_-

zationslunitsexistinginthe company. One way thatwss

foundtobe quite useful lets the availability of mathematical
models embodied in the computer codes establish a decom.
position scheme.

To striveat such a scheme one beans (re_.3,4)with

taking an inventory of the major computer codes applicable
for the vehicle design at hand. The inventory is then
represented in a graph-theoretic form ss shown in Fig. 1
as a system of interconnected modules that will also be

called SU_. The system Of modttl_ SS in Fig.I is

a mathematical model of a vehicle beingdesired.
box in the diagram represents a computer code and the lines
with the arrowheads depict the data flow among the codes.
In this representation the codes are treated ss black boxes
so that the internal details are invisible and the focns is on

the input/output data. Also, the graph does not in say way
iUnstmte the execution sequence; i.e., it is not a flowchart,
itis only concerned with the data flow.

Once the d_ta flow is established, one moves on to
determine the data completeness and the e_ecution sequence

with an aid of a table known as the N-equate Matrix (mr. 5)
portrsysd in Fig. 2 for the system from Fig. I. Esch of
the n black boxes fi'om Fig. I is placed on the dis_onal
in a .-by-. tablereferredto as the N-m_um_ Msgr.. For
displey purposes, each black box module is de6ned m

is capable of tranmnimug output horizonm_ to the risht
and to the left and of accepti_ input _ from above
or from below, as indicated in Fig. 3. In the table, the data
flow fi_nn module ito module j is repreeented by ado_ atthe
intersection of i-th row and j-th column; while the ,beenoe
of a dot means that no data are being transmitted. A dot
indicates only that the data transm/ssion occurs but does
not define precisely what data items are being transmitted.
To define that, a separate record has to be establkhed in a
way to be describedlater and stored. The output data sets
conmpondi_ to each dot in amw nmy not be mntuslly
exr.lusive--it is pmsible that the same data items are being
sent from module i to modules y, k, l _ However, the
input data sets represmxted by a dot in a column must be
mutually exclusive, i.e., an input datum for module _ must
be comi_ from only one, and no more than c_, source
module. The N-square blsn-ix so definedis easy to record
in a digital fonnst module by module. The record of module
k consists of ira addrem i on the dis@mini at the intersection
of _-th row with _-th column; the i, j addresses of the dotsin

/-th row and the i, 1 addremm in/-th colum_ For eachdot



so addressed, there exists a list of the specific data items it

represent&

To establish such an N-square Matrix, one begins with

the modules placed on the diagonal in a random, or the

beat guess,order. Next, one scans the entirelength of i-th
column above and below the module i position. At /-th

row one compares the i-thmodule input listwith the l-th

module output li_ to findout what data items from module

I fitas input to module i. The data items so found are

recorded in the i, l sets. After the entire length of column i

is _ched, the/-th module input data for which no source

has been fnund am identified as the input external to the

system. AltermttJvety, a new module or modules may be

added to the system to supply these data. Ifmore than one

source was found for any data item, a choice must be made

to make the input uniquely defined and recorded.

The above systematic procedure defines a data flow
among the modules in the system. It is very effective in

revealing the _ data. Also, it cau be generalizedbe-

yond the computer code systenm by broader interpretation

-"of a mzxiule as a source of information, be it a computer

code, an expm4ment, a data graph in a book, or a person's
expert judgment. In this way, then, collective data knowl-

edge of an entre engineering organization may be examined

and recorded in a manner that is systematic and easy to

store in a computer memory.

After definingthe data flow,attentionshiftsto determin-

ing the best _quence of execution forthe modules. In the

_tion that amumes execution order along the diagonal

from the upper leR comer, each dot in the upper right half

of the man_ marlin an _ce of the data passed fowazd

(feedforward).Convm'_2y, a dot in the lower lefthalfmarks

the instance of a feedback. Each instance of a feedback im-

pliesan iteration that may begin with the best guess at the

input into module i from a downstream module j that itself

may depend, directly or indirectly, on output from module i.

Three such iterations (iterative loops) are indicated in Fig. 2

by tim feedbacks from modules 1 to 3, 2 to 3, and 4 to 1.

The number of the feedback instances and of the asso-

ciated iterations may be reduced by permutating the dots

in the predecemor-succmsor module pairs on the diagonal

and sinmltaneously permutating the dots in the rows and

columna _sociAted with these modules. In the system of

Fig. 2, permutation of the modules to positions shown in

Fig. 4 reduces the number of iterative loops from three to

one.

While the conventional wisdom holds that one should at-

tempt to elimimtte the iterations or, at least to reduce their
number in order to lessen the overall computational effort,

tim _Immt of pamUal computing technology may suggest

the opp_/te--it makes s_se sometimes to reorganize the

module execution sequence so ss to create an opportunity
for concttrrent execution even ff at the price of introducing

iterations that might haw been avoided. Such artificially

c_ata_I concurrent iterativecomputation may, ifthe con-

vergence is sut]iclently fast, be completed in a time shorter
than the _e without the iteration. The sequential

and concurt_lt e_eentions of modules coupled by data flow

form characteristic patterns of the dots in the feed forward

field as illustrsmi by two examples in Figs. 5a and b.

If the N-square Matrix is stored digitally as defined

above, its permutations may be computerized to search ei-

ther for iteration-minimizing patterns or for patterns that

maximize opportunitiesfor concurrent computation. Com-

puter programs capable of doing this are beginning to be

available; e.g., ref. 4. An _xample of an application to a
large system of modules is shown in Figs. 6a and b, which

portray the initial and improved sequences. In the improved

sequence, the iterations have not only been reduced in num-

ber but also clustered. The group of modules tied together

in a cluster of iterations will be referred to as a supermodule.

One supermodule is highlighted with a heavy borderline in

Fig. 6.

The iteration clustering is important because it imparts

a hierarchic structure depicted in Fig. 7 to a system of su-

permodules that conl:ain the clusters of the modul_. The

diagram in the figure is a graph-theoretic representation of

the supermodule system termed hierarchicbemuse the data

flowonly from a parent module to itschildrenand not in re-

verseor among the children.That isnot so insidethe super-

modules; hence the structuresformed by the modules inside

of supermodules are called non-hierarchic The hierarchic

structureof supermodules allowstheirsequentialex_ontion

with opportunitiesfor concurrent computations; e.g., super-

modules within the group (2, 4, 6) and (3, 5, 7, 9) may be

processed simultaneously.The entire system of modules and

supermodules such as illustrated in Figs. 6 and 7 is referred

to as a hybrid system. In the extreme, the hybrid

becomes exclusively hierarchic if each of its supermodulm

contains only a singlemodule. In the other extreme, itbe-

comes exclusivelynon-hierarchicifitconsistaof one and only

one supermodule whose internalmodules exhibitdata con-

nectious such as those illustratedin Figs.1 and 2.

Thus, the data flow defines the vehicle mathematical

model as a hierarchic,non-hierarchic,or hybrid system.

Optimization schemes for the hierarchicand non-hierarchic

systems willbe examined next.

Optimization of a Hierarchic System

A methodology for optimization of systems represented

by mathematical models organized into a hierarc_ such

as the one formed by the supermodules in Fig. 7 became
well-established in the last decade in a _ries of theore_cal

publicatious; e.g., rely. 2, 6, 7, 8, 9, and 10. It will,

therefore,sufficehere to restate brieflyits foundation for

a procedure that is known as the optimization by hierarchic

decomposition.

For introductory purposes, the system is simplified to

one of only one parent and one level of several children

subsystems below as in Fig. 8 and is described in an entirely
abstract way. Translation of that abstraction int_ specifics

of a vehicle applicatious may be found in m_z_mc_ to

be cited later. The subsystems in Fig. 8 correspond to

the supermodules in Fig. 7 and may further decompose

internally.

The governing equations of the parent _rtem may be

written in the most compact form as

F(Y, X, P) = 0 (1)

where F isa function vector, P isa vector of given parame-

tern, X is a vector of the design variables, end Y is a vector



of unknown behavior varisblee. Solution of eq. (1) is tan-
tamount to analysis of the aseembled system (the vehicle
analysis) and it yields Y for an amumed X. Knowing Y and
X, one can establish a vector Z to be an input transmitted

the parent to a child subsystem

Z = Z(Y, X) (2)

where

Y = Y(X) (2A)

by virtue of the solution of eq. (1).

In a submystem, the local design variables axe collect_
in vector z, the unknown behavior variables are elements in

vector 7, and the governing equations are written analogous
to eq. (I) using a vector function / that depends on the
_J_men_ of g as parameters

f(p, z, Z) = 0 (3)

Based on the solution of eq. (3), one may solve for one
isolated subsystem a standard optimization problem for the
independent variables z, while holding its input Z constant

rain ¢(y, z) subject to g(il, z) < O; h(y, z) = 0 (4)
Z

where _(y, z) is an objective function, and g(I/, z) and h(y, =)
are the vectors comp"ruingthe inequality sad equality con-
stralnt functions. The results of the above optimization are
the constrained minimum of _, denoted _m_, the optimal

values of =, desixusted =opt, and the corresponding values
of constraints dmi_Ated gop_and hop¢.

The above optimization is carried out for each child sub-
system. Following that, the amembled system (the parent)
is optimized using X as independent variables. Because X
exerts influence on the subsystem optimal results through
the functional relationships in eqs. (3), (2A), sad (2), it is
necessaryto supply the system-level optimization procedure
with the information about that izdieence; otherwise, the
procedure could generate a change of X that would benefit
the parent but harm the children.

The influence of X on the subsystem optimization remdts
may be measured, to the first order of apprcadmation, by the
derivatives of these rmulta with respect to X. To establish

these derivativee, one begins with derivativee with respect
toZ

&_m_/SZ; 8Xopt/aZ; agopt/ez; e_pt/ez (5)

Considering the functional relations in eqs. (2) sad (2A), one
can extend the above by chain-differentiation to establish
derivstivee of the optimal remdts with respect to X

 opt ( ez ez

= + (SA)

The sensitivity analysis alsorithms of the type reviewed in
rd. II may e_ciently eval_te the partial deri_tivce in the

above chain. The optimum sensitivity algorithms described
in reds. 12 and 13 also apply.

The influence of X on the subsystem optimum may now
be expressed in a general form referred to as an influence
function

= _(_, ZoO, go_, _,_) (6)

whose derivatives with respect to X may be obtained by
chmn-differentiation using the derivatives from eq. (SA)

dr o% d_ _ ._°pt_ _ @opt
d-X = e_min "_ + OXo-----_ d_ egopt " d._

+_
(7)

The above derivatives substituted into the linear portion
of the 7kylor series provide an apprc0dmation to "1 as a
function of X to represent the influence of X on a particular
subsystem.

= + ax (8)

The above subsystem optimization and sensitivity analysis
may be ez_-uted for all the subeystems concurrently because
the subsystems do not directly exchange any data with each
other.

The assembled system optimization that follows solves a

standard optimization problem in the independent design
variables X, the objective function _, and the constraint
functions G and H

raine(r, Y,x)suhj toG(r, Y,x)_<o;
x

H(r, Y, X) = O; (9)

Inclusion of the infiz_zmtion about the influence of X on

the subsystem optima in the above problem may be accom-
plished by using the influence fuactic_ _ that were defined
in eq. (6) for this very purpc_. The _ functiom for all the
n subsystem maybe used to form a function vector r

r={Th?2,..."/n) (10)

that appears as an additional argument in the objective
function and the constraint functions in the optimization
problem of eq. (9), so that

= #(r,Y,X); c = (r,Y,x); H-- H(r,Y,X) (11)

Wheneve_ X dm_e_, the conmponding dmages to the
functions in r, may be spprc0dmsted by the extrapolation
in eq. (8).

The above describes a foundation shared by the meth-
ods forming a methodology for optimization of hierarchic
system& The particular methods differ in the formulstion
details of the functions ¢, g, h, and _ in the subsystem op-
tim_tion. In the system optimization, the difference_ are
in the formulation detalk of the functions r, @, G, _nd
H, and also in the way they incorporate r ms an argumemt.
Some of the references that elaborate on these formulation

details were quoted at the beaming of this section. Purther
evolution of thk methodology continues.

Application experience has sccumulated a number of
cam ranging from structural optimization by substructur-

in_ documented in rofa 9sad 14 to optimization of a Ltrge



transport aircraft for fuel economy described in ref. 15. Ap-

plication to the control of aeroelastic behavior was reported
in ref. 16 in which the active controls and air, nine were

treated as two subsystems in a control-structure system. An

example of a recent application provided in ref. 17 is an op-

timization of a two-stage launch vehicle, depicted schemati-
cally in Fig. 9, to maximize the payload placed into a spec-

ified orbit. In this application, the large and complex prob-

lem comprising optimizations of the lower (booster) stage

and the upper stage vehiclesand the Launch trajectorywas

decomposed into subsystem problems: one for the booster

and one forthe upper stage,and a system levelproblem that

adjusts the orbitparameters to maximize the payload.

In rotorcra/t, a long-range, comprehensive development

of optimization methodology for the rotor blades described

in ref.18 incorporates the hierarchicdecomposition as its

theoreticalbasis.

Optimization of Non-Hierarchic Systems

In a non-hierarchic system, every subsystem may, poten-

tially, influence every other one, e.g., module 1 in Pig. 1.

An approach to optimization of such systems that attracted

attention during the last few years is based on derivatives

of the system behavior (response) with respect to design

variables. These derivatives are useful both fur judgmental
decision making and fur furmal optimization. The essential

feature of the approach is an algorithm fur system sensitiv-

ity analysis formulated in ref. 19. That algorithm, to be

discussed next, decomposes the system sensitivity problem

into a set of subsystem sensitivity problems while preserving
the subsystem couplings.

System Sensitivity Analysis
A system of fully interconnected modules shown in Fig. 10

is an example convenient for introducing the algorithm.
The number of modules limited to three is large enough to

develop a solution pattern that generalizes to any number

d modules. To have a physical reference in mind, consider

the system in Fig. 10 as simulating an actively controlled

flexible wing. Then, let module r, be a mathematical model

for aerodynamics, e.g., a CFD code, and the modules _ and

_/ be mathematical models for a structure (a finite element
program) and for a controlsystem.

Prerequisite to the sensitivity algorithm is the system

analysis. It amounts to finding a solution to the governing

equations of the system written as a function vector whose

arguments are the vector of the design variables X and the
vectors of unknown behavior variablesY.

F(X, Ya, Y[_, 1/7) = 0 (12)

Each vector Y is the output from the module identified by

the subscript; for instance, Y_ may be a vector of struc-
tural displacements. Each module input consists of X and

Y from the other modules. It also may contain constant pa-

rameters P that are dropped as irrelevant to this discussion.

Typically, solving eq. (12) which may comprise nonlinear

analysis, for instance in the CFD module a, requires itera-

tions among the modules; e.g., iterating between modules

and ]_ to determine aerodynamic loads and deformations of

a flexiblewing.

When the system is solved,each module is temporarily

isolated for the purposes of sensitivityanalysisthat yields

derivativesof the module output with respect to its inputs

of Y and X. These derivativesare then placed as coeliicients

in the set of simultaneous, linearalgebraicequations called

the Global SensitivityEquations (GSE). Specifically,the

derivativeswith respect to the Y inputs are collectedin the

Jacobian matrices identifiedby a pair of subscripts. For

exaznple,

Ja._ = [ora/ oY.y] (13)

An element i,j in this Jacobian matrix is the derivative

of the pressure coefficient at the i-th location on the wing

surface with respect to the deflection angle of the 2-th

control surface. The Jacobian matrices fill the off-diagonal
submatrix positions in a square matrix of coefficients on the
left-hand side of GSE

-J_,_ I - _ dY_/dX k
L-J o I ( dV /dX 

{Oro/aXk}= ar laX , (14)
8YT/OX k

where 1 are the identitysubmatrices. The derivativeswith

respect to a p_rticularelement X k of X are placed in the

right-hand sidevector. The number of the right-hand side

vectorsequals the number of X_'s of interest.

The unknowns ineq. (14)are the derivativesofthe system

behavior Y with respect to X. These derivativesaccount

for the coupling amoung the modules, even though the

derivativesin the Jacobian matrices and in the right-hand

sidevector are obtained from the sensitivityanalyses of the

modules treatedas ifthey were isolated.To emphasize this,

the derivativesobtained from the solution of eq. (14) are

termed the totalderivatives,laterreferredto as the System

Design Derivatives (SDD), while the other derivativesare

recogn_ed to be partial derivatives.

Typically,the GSE matrix is block-sparsebecause each

off-diagonalJacobian corresponds to a particularoutput-

to-input transmission of the Y data. The same is true

for the right-hand sidevector since some modules may not

be directlyaffected by a particularX/c. For instance, an

X k representing a croas-sectional dimension in the wing

structure will not influence directly the outputs from the
aerodynamic and controlanalyses, hence only the right-hand

sidevector partitioncorresponding to the module _ willbe

non-zero.

Complete detailsof the GSE derivationand a discussion

of the solvabilityconditions may be found in ref.19. In

ref.20, the above sensitivityanalysiswas extended to the

derivativesof higher order.

Utility of System Design Derivatives

The SDD's are useful in several ways. They are effective

in quantifying, fur judgmental purposes, the degree of in-

fluenceof the design variables on the system behavior. An

example from ref.3 isillustratedin Fig. 11. The behavior

variableofinterestisthe range of a general aviationaircraft.

The range isinfluencedby structuralweight fractionof the

totalweight,and the C|/C d ratiothat isaffectedby the wing

elasticdeformations. Hence,.the range willdepend to some

extent on the wing cover thickness. Formally, thismay be

represented as the behavior of a system depicted on top of



Fig. IIL The Breguet range equation from the PERFOR-
MANCE module is also shown m Fig. fla. A highly idealized

finite element model of the wing from the STRUCTURES
module is illustrated in Fig. 11b. Change of the thickness

t in one of the wing cover panels affects, as the arrows in

Fig. 11a show, the weight, elastic deformations, aerodynam-
ics, and ultimately, the terms in the range equation. The

influences on the weight and aerodynamics are conflicting,
hence it is difficult to assese judgmentslly the ultimate ef-

fect of _ on the range. A precise measure of that el_ect was
obtained in form of the SDD values from the solution of the

GSE for the system portrayed in Fig. 11a. Normalized values
of the range derivativee with respect to the thicknem of the

four cover panels on the top surface of the wing are repre-

sented by vertical bars in Fig. llb. This type of information
when available on line may foster the designers' insight into

the cause-effect relationships that should be considered in
their decisions.

The SDD's play a key role in formal optimization be-

cause most of the optim/zatinn algorithms rely on gradients

in searching the design space. A procedure for such opti-

mization is shown in Fig. 12. The system analysis sad sen-
sitivity analysis discussed above appear as two consecutive

operations in the chart. An obvious opportunity for con-

current processing occurs in the sensitivity operation. The

operation of approxinmte analysis usually involves an ex-

trapolation, such as the use of the linear part of the Taylor

series. The iterative loop back to the system analysis in the
procedure is necessary because in the general case of a non-

linear system the SDD's are valid only in the neighborhood
of the system solution.

It is eseential in this procedure to use normalized (logs.
rithmJc) partial and total derivatives in the system sensitiv-

ity analysis to eliminate the effect of differences in the order

of magnitude of the variable values that may exist because

of differences in the units of measure. That effect may be

detrimental to the numerics] search. Normalized derivatives

are also easy to interpret because they have a uniform mean-

ing of the percent of change of the dependent variable caused

by one percent increment of the independent variable. An-
other caveat is that the volume of data transmitted from

one module to another should be kept as low as possible by

a judicious use of reduced basis techniques to avoid excessive

dfmensionality of the Jacohian matrices in (]SE.

It is noted that the procedure of Fig. 12 can also be used

for optimization of a hierarchic system because the GSE

exists for such systems. In that case, the GSE matrix is

populated with the Jacobian matrices on only one side of

the diagonal hence the GSE solution cost is greatly reduced.

Non-hierarchic System Optimization Examples

Applications of the above procedure have been growing

in number much faster than those for hierarchic systems;

apparently the non-hierarchic systems occur relatively more

often. The applications may be categorized by the level of
the analysis employed in the modules.

An example of the application in which the analyses rep-

remmting major engineering disciplines contributing to air-
craft design were deliberately kept at the conceptual design

level described in reg. 21 was reported in ref. 22. The sub-

jcct of the study was a short-takeoff, medium-range heavy

transport and the purpose was to show that a formal opti-

mization based on the SDD data obtained from GSE may

be combined with the classical parametric study method to

investigate how the major configuration design variables in-

fluence the aircraft performance. Demonstrating that such

a combined approach may be effective constitutes an im-

portant contribution because conventionally the parametric

studies and the formal optimization based on nonlinear pro-
gramming were regarded to be mutually exchmive methods.

One of many results furnished in ref. 22 is reproduced in

Fig. 13. It shows the take-off grcas weight as a function of
the cruise Msch number for a prescribed set of constraints

that included the required range, maximum allowed take-off

run length, etc. The curves labeled 1 to 4 correspond to

the different sets of design variables as follows: 1--aspect

ratio, wing area; 2--as in set 1 plus the wing sweep angle;

3--as in set 2 plus the airfoil depth; 4--as in set 3 plus taper

and cruise altitude. Each point on the curves represents an

aircraft configuration optimized by means of the procedure

illustrated in Fig. 12 executed for the corresponding Mach

number value treated as a constaut parameter, using the

variables specified in the above sets es elements of X.

Thus, the study was, in effect, a two-level approach.

Parameters, such as the Mach number in Fig. 13, were

varied systematically as the higher-level design variables.

At a selected setting of these variables, the optimization

procedure was carried out operating on the configuration

variables treated as the lower level, more detailed design
variables.

Another applicationin the same category was described

in ref.23 in which an unconventional transport aircraft

with three liftingdmffsces was optimized by the procedure of

Fig.12 _ the shape and positionsofthe liftingsurfacesas

design variables. The configuration in its initial state (base-
line) and after the fourth iteration of the optimization proce-

dure isdepicted in Fig. 14. In addition to si_ilcant numer-

icalresults, this application has also demonstrated that the

inherent parallelism in the system sensitivity analysis can be

exploited by having members of the engineering team calcu-

late concurrently the partial derivatives for the GSE.

To close the sample of results in this category, applica-

tions to hypersonic, single-stage-to-orbit aircraft and to a

hypersonic, long-range interceptor were reported in refs. 3

and 24, respectively. In the former, the procedure of Fig. 12

improved the propulsive elBciency index by nearly 13% using
the configuration and structural design variables. This was

regarded as a very significant gain because the initial con-

figuration procedure was already refined by extensive pars-

metric studies.A similar improvement was noted in the hy-

personic interceptor case in which a reduction of the take-off
gross weight of 13% was achieved.

An example of an application in which the modules en-

tailed analysis at the level more typical for a preliminary

design phase was reported in refs. 25 and 26. That applica-

tion objective was the development of a methodology for ed-

vanced aircraft optimization; a generic supersonic trmmport

Aircraft depicted in Fig. 15 was selected as a test case. The

above development included systematic orgauization of the

methodology numerical process by means of the N-equate

Matrix discussed previously. The graph-theoretic represen-
tation of the modules in the mathematical model of the su-

personic aircraft is illustrated in Fig. 16, and the sequence



ofthemoduleexecutionsthatminimizes the number of it-

erative loops is portrayed in Fig. 17 in the N-square Matrix
format. The module execution sequence in that figure was

obtained by means of the software described in ref. 4. Op-
timization results available in refs. 25 and 26 were limited

to those obtained from a system simplified to three modules

shown in Fig. 18. A sample of these results is portrayed

in Fip. 19 and 20. The former shows the contour plots
of the Tsai-Hill criterion constraint which was one of the

constraints active in the composite cover of the wing. In

the initial design that constraint was well satisfied indicat-

ing that the wing structure had some unnecessary material.
This state corresponds to the initial point on the optimiza-

tion histogram illustrated in latter figure. As indicated by

the descending weight plot in Fig. 20, optimization removed
that unnecessary material and in the process rendered the

Tsai-Hill constrain critical in some areas of the wing cover.

The plot continuation in Fig. 20 shows how the configu-

ration study was progressing, including judgmental, discrete

changes such as raising the wing cover minimum gage; re-

ducing the sandwich core thickness in the wing cover panels;
and switching from a composite material to titanium. The

methodology was apparently effective in bringing the sys-

tem in only very few iteration8 to a new optimal plateau

after each such judgmental design intervention.

The application examples quoted in the preceding two

sections have been carried out for systems either completely

hierarchic or completely non-hierarchic. So far, no expe-

rience was reported with optimization of a truly hybrid

system. However, considering success of the above two meth-

ods, one may anticipate that the next step will be devel-

opment of a procedure in which a hybrid system of super-

modules, such as the example in Fig. 7, will be optimized
by the hierarchic decomposition method employing the non-

hierarchic system optimization in each supermodule.

Correlating Simplified and Refined Analyzes

Because of their modular nature, both the hierarchic and

non-hierarchic opt_ation methods described above may

accommodate disciplinary analyses of various levels of refine-

ment without changing their procedural organization. Con-

sequently, one may anticipate development of a capability for

a coordinated use of analyses at different levels of sophisti-

cation. A step in this direction is a technique described in
refs. 27 and 28.

To summarize that technique, consider a physical phe-

nomenon to be represented by two mathematical models:

a relatively crude but inexpensive to analyze model A and

a relatively refined and correspondingly more expensive to

analyze model B. At the beginning of optimization, one an-

alyzes both models and obtains results R A and R B. The
correlation factor 8 isnow introduced, defined ms

8 = RB/RA (15)

Because both R A and R B are functions of X design vari-

ables, R A = RA(X) and R B = RB(X), the derivatives of 8

exist

dB/dX = (dRB/dX R A - R B dRA/dX)/R 2 (16)

where dRA/dX and dRB/d.X are obtained from the teepee-

tire sensitivity analyses. If RA and ll B are vectors then

6

is a vector, and dSldX, dRAId, X, and dRBIdX are the
Jacobian matrices.

To save computational costs of repetitive use of model B

in the ensuing steps of the optimization procedure, one may
now use model A instead and apply a correction f_'mula to

approximate R B

(RB)apprax = RA (80 + d8/dX AX) (17)

which reflects the influence of X on 8 to the first order of

accuracy. In nonlinear problems,the values of 8o and d_/dX
have to be periodically updated.

Effectiveness of the above technique was demonstrated

in ref. 28 in which the object was wing structure, model

A was the wing plate representation, and model B was

the wing refined finite element model. An example of

one of the (RB)sppro_ results corrected as in eq. (17) was

the first natural frequency whose error was kept to only
about 1% for the cross-sectional design variable changes

of the order of more than 100%. Or.e may anticipate

that type of apprcodmste analysis to be especially useful in

applications that require nonlinear aerodynamics analysis.

Computational costs of that analysis grows exponentially
with its sophistication level relative to the linear analysis

as illustrated in Fig. 21 (ref. 25). Using linear analylfis as

model A corrected by _ as above could provide a compromise

needed inoptimization between accuracy and computational

cost. Encouraging progress in that direction was already
reported in ref. 29.

Concurrent Subspace Optimization (CSSO)

The optimization method for non-hierarchicsystems de-

scribed in the sforegoing uses decomposition limited to the

system sensitivity analysis only. Once the SDD's are ob-

tained, the system optimization is treated as a single prob-
lem. This is in contrast to the hierarchic system optimiza-

tion in which the system optimization itself is divided into

subsystem optimizations. It was recognized in ref. 30 that

it would be advantageous to extend deeompomtion in non-

hierarchic systems beyond sensitivity m_lysis so as to opti-

mize the subsystems separately, similar to the way it is done
in the hierarchic systems.

An algorithm to do this was introduced in ref. 30 and,

subsequently, developed and test_ in ref. 31. The algorithm

is based on two key ideas: all the subsystems that have an

influence on a constraint should share responsibil/ty for that

constraint satisfaction, and all the su_ should share

the same objective function.

An example of a wing treated as a system combin-
ing aerodynamics and structures illustrates the above idea.

Each of the two disciplines is being represented as a mod-

ule, and they are coupled through the aerodynamic loads-

deformation data exchange. Suppose that in the initial de-

sign there is a violated stress constraint caused by bending

at the wing root. That constraint might be satisfied by the

purely structural means of crose-sectional nwi_ing, or by re-

ducing the wing aspect ratio which is a variable tradition-

ally in the domain of aerodynamics. The algorithm engages

both disciplines in this caee--aerodynamics and 8tru_

into satisfaction of the stress constraint by dividing its value



between the two disciplines in a proportion determined by a

factor r; i.e.,

gs < go r; gA< go(1- r) (18)

where go > 0 is the value of the violated constraint g, and

gs and gA are the parts of g to be satisfied separately as
constraints in the structural and aerodynamic optimizations,

respectively. Both of these optimizations use a common
system-level objective function, which in this example might
be drawn firom the aircraft performance; e.g., the flight

range. The two disciplinary optimizations may be executed
conourrently. Following that, a system-level coordinating
optimization is performed to adjust the r factor to improve
the common objective function and to maintain satisfaction
of all the constraints. The method readily generalizes to the
cue of n modules in a non-hierarchic system. The subsystem
and system opt/mizations depend on the sensitivity data
obtained from GSE.

The above method became known as the CSSO because it

is related to a nonlinear mathematical programming method
that formally divides the design space into subspaces. It is
still in the early development stage, but some application
experience beyond the test cases in ref. 31 have begun to
emerge. An example is a solar energy recovery system
whose CSSO-based optimization was reported in ref. 32. It
is anticipated that the CSSO approach has a potential to

become a unified method fur hybrid systems including their
purely non-hierarchic extreme.

V_p_ 7 Senmti_t_Anal_

All the op"tnnization methods for hierarchic and non-
hierarchic systems dkcuseed in the a_regoing rely on the
disciplina_ sensitivity dsta. Eve,, though one may obtain
such data by fini_cing techniques, the computa-
tional costs and potential accuracy problems of these tech-

niques motivated in the recent two decades development of
the d/scipllnary quasi-analytical sensitivity analyses that are
intrinsically superior to finite differencing. For the optimiza-
tion methods discussed herein, these techniques may be re-
gnrded as enabling technology.

So far, the quasi-analytical sensitivity analysis has be-
come mature and generally available only for structures
where it is based on differentiation of the governing equa-

tions (the load-deflection equations) and solution of the re-
suiting simultaneous, linear algebraic equations that com-
prise derivatives as unknowns. Reference 11 provides a
survey of literature. Recently, beginning of a similar de-
velopment in CFD has become apparent; e.g., rely. 33-43.
Because the higher order CFD codes are usually very ex-
pensive to execute, continuation of the above development
to the production level is important for making the opti-
mization methodology discussed in this writing widely used
in aircraft dedgn.

One may anticipate that with structures sad aerodynam-
ics paving the way, development of sensitivity analym in
other engineering disciplines will follow. In the meantime,
finite differencing remains available as an inferior but still
usable alternative.

Discussion of sensitivity analysis would be incomplete
without mentioning the new technology of Automatic Differ-
entiation (AD). This technology has been successfully used

in the nuclear industry for a number of years but has only
recently come to the attention of aerospace e_Onoers. The
AD principles are described in ref. 44. In a nutshell, to use
an AD approach for computing derivatives of output Y with
respect to the input X for an existing code C, one has to
use a special AD code, let it be called ADC, as a tool. Sev-
eral ADC codes are now available, commercially and in the
public domain. The ADC reads C, and for a C line that

is an assignment statements of the type a = /(b) it per-
forms symbolic differentiation to obtain da/db. However,
that symbolic differentiation is performed only internally to
evaluate the numerical value of da/db. The derivative ana-
lytical expression is not carried forward; only its numerical
value is. If on a subsequent line one finds the variable a on
the right-hand side; e.g., c =/(a), then a chain differenti-
ation is invoked to obtain dc/d5 = dc/da da/db. The chain
derivative8 are concatenated numerically from the be_uuiz_
to the end of the code C to obtain the derivatives of dY/dX.
The product of ADC proceming C is a new source code,
let it be called NC, which is the original code C augment_
with the calls to the special subroutines in ADC that do the
above differentiation. It is remarkable that NC reproduces
all the loops and if-branches of C.

The new code NC may then be used to produce the same
output Y that C did and, in addition, it yields dY/dX with
computational eIBciency better than that of finite _e.
ing and with accuracy equal to that of analytical differenti-
ation. For an engineer the principal advantage of AD seems
to stem from its bypassing the software development that
otherwise would be required by any of the alternative, die.
ciplinary, quasi-analytical, sensitivity analysis methods pre-
viously discussed. For that reason alone, AD might be a
potential breakthrough. An example of some initial applica-
tions in engineering was reported in ref. 45.

Genetic Optimization Algorithms

Up to this point in the paper it was tacitly assumed
that the Y = f(X) are continuous functions, the X are
continuous variables, and that there is no problem with local
minima. In many applications these assumptions are not so,
hence it is useful to have methods available that are capable

of handling problems with discontinuities and local minima
The so-called genetic algorithms are one family of methods
that, in addition to other merits, showed promise to do that.

Genetic algorithms simulate the improvement process
that occurs naturally in the biological evolution of a species.
Adapted to engineering design, the basic conceptual ele-
ments of the algorithm are: 1) random generation of a pop-
ulation of designs that dii_:r by the values of design
ables; 2) evaluating a measure of fitness for each design in
the population; and 3) mating the designs in pairs to pro-
duce offspring. The mensure of fitness is a function whose
value depends on the degree of satisfaction, or violation, of
the constraints and on the values of the objective functions
(the approach is intrinsically suitable to handle multiobjec-

tire problems). The probability of an individual design par-
ticipation in the mating process is made to rise with the
individual design measure of fitness. The f_eatures of the
mating parents are paseed to the olf_pring by a probab'flie.
tic mechanism that eusur_ that the olf_pring inherits the

parents' features and that occasional mutations occur which
produce new offspring features not present in the parents.



Thus, the off_riug population replacing the parent popu-

lation has the measures of fitness improved on the average
and, due to the mutations, superior features occur in some

offspring to initiate a new line of evolution as a way out of

global minima.

To date no vehicle system applications have been re-

ported. However, encouraging results from optimization of

wing structure, described in ref. 46, showed that the ap-

]>roach was very effective in homing on the neighborhood of

the global optimum in the demgn space. Th_ application

also showed that for locating the optimum more precisely in

that neighborhood, it is better to switch to a gradient-based
search. This suggests that the genetic algorithms may be

regarded as complementary to that type of search. Regard-

ing the applicability range, it is expected that the computer

technology progress will reduce the cost of generating large,

statistical]y significant populations required by the genetic

approach to the level where application to entire vehicle sys-

tems will become economically feasible.

Design of Experiments Methods

Recently, a renewed intermt was noted in optimi_.ation

methods based on the Design of Experiments (DOE) ap-
proach. Under that approach, a number of designs is placed

as design points in the design variable space spanning the

domain of intermt. Each such design behavior may be eval-
uated by any suitable method, including experiments, statis-

tim from past experience, etc. Behavior variable of interest

may be approximated as an explicit function, called the re-
sponse function, fitted to the design points. Generation of

the designs, their evaluation, and the response function fit-

ting constitute an initial investment to be recouped in opti-

mization in which the need for behavior data may then be

satisfied at a negligible computational cost by evaluating the
explicit response functions.

This approach has a long history dating back to ref. 47.

An example of usefulnms for aircraft design is an application
to transport aircraft engine selection in ref. 48. The method

does not require sensitivity analysis of the designs placed
in the design space, hence it can accommodate di_xete

variables. Another advantage of the method is that the

design points may be generated concurrently and new ones

may be added as the design process progrmm_. On the

other hand, the method has s major drawback of requiring a

large number of design points that grows exponentially with

the number of the design variables. That growth can be

moderated somewhat by various statistically based schemes

for strategic placement of a reduced number of the design
points, but its exponential character cannot be removed
because of the combinatorial nature of the method.

Two reasons may be discerned for renewed interest in

DOE. The first one is the current emphasis on taking into
account in designing the entire life cycle of the product, in-

cluding manufacturing, maintenance, and disposal, al] dom-

inated by cost. These considerations are difficult to model

mathematically in the same smme as conventional engineer-

ing disciplines but can be accounted for by statistical and

experimental data at the design points. The second reason

is the succem of the orthogonal arrays, also referred to as the

Teguchi arrays, in systematic improvement of the industrial

product quality. These arrays readily adapt to DOE as a

tool for limiting the number of the design points. From a

DOE standpoint, the orthogonal array technique is simply

a way to place a set of design points in the deign variable

space in such a way that the maximum of information may

be extracted from it. This is achieved by making the vectors

comprising the coordinates of the dmign points orthogonal
to each other; ea_ such vector constitutes a column in the

orthogonal array. The vector orthogonality removm duplica-
tion of the information contained in each design point. The

technique does not eliminate the exponential growth prob-

lem mentioned above, and the orthogonal arrays commonly
available in a tabular form usually represent each variable

at no more than three settings which only accounts for the

lowest order of nonlinearity. One also needs a prerequisite
knowledge of the variable interactions to chooee the best

array type for the application at hand. A comprehmmive
s_sessment of the orthogonal arrays in the DOE context is
given in ref. 49.

Despite the limitations, the DOE approach enhanced by

the orthogonai arrays proved its usefulness in a growing
number of applications. An excellent recent example is the
optimization of a single-stage-to-orbit vehic_ in ref. 50.

Massively Parallel Computers

All the methods discussed herein strain the premmt ca-

pacity of the computer. The CPU time required by CFD

(illustrated in Fig. 21), amplified by the repetitive use of

analysis in design, makes that point very clear. Fortunately,

the exponential growth of computer speed and capacity is
certain to continue even though the speed of a conventional

serial machine appears to be approaching natural physical

limits. The new way to continue that growth is through

development of massively parallel computers. A systematic
development program in that direction is described in ref. 51.

The aim is to bring the effective computational speed mea-
sured in the floating point operations per second into the

trillion range. This will require parallelization of computing
both at the equation level and at the module level. In the

former, the internal code in a module must be rewritten for

maximum use of concurrently operating p_. In the

latter, the intsrnally unchanged modules execute simnltane-

ously, each on its own processor.

The methods discussed in this paper are all amenable to

paral]elization at the module level, preserving the investment

in existing software. Beginning at the module level with the

existing software win provide at least partial benefits from

the parallel computing early, before massive investment in a

new software parallelized at both the equation and module
level pays off.

Conclusions

Starting from an axiomatic "divide and conquer" premise,

the basic schemes for decomposing the large optimi_tion

problem of aircraft into smaller problems were examined. It
was shown that if the vehicle system mathematical model is

considered as an assemblage of modulm, each module repre-

senting a mathematical model of a physical phenomenon (an
engineering discipline) or behsvior of a vehick component,

then the data flow among the modules defines three bssic

system organizations: hierarchic, non-hierarchic, or hybrid.

Key ideas and essential features of the optimization meth-

ods that have evolved for each of the above system organizs-
tions were discussed with s selection of references cited for



more detaik. Particular attention was given to the sensitiv-
ity analyses at the discipline and system levels, which are at
the core of each of the above methods. Alternative methods
were pointed out for applications in which discontinuities
of the functions and variables, local minima, and scarcity
of analytical models limit usability of the derivative-based
methods.

The picture emerging from this review is that of sev-
eraS diverse methods and techniques coMescing into a new,
rapidly crystallizing methodology that enables optimization
of seroepsce vehicles as systems in which everything
everything else. Far from attempting to supplant the human
designer, the methodology is predicated on decomposing the
large system optimization problems into smaller ones to be
worked concurrently by groups of specialists in en/_neering
organization supported by parallel processing of dat&

Development needed to accelerate application of the
above methodology entails sensitivity analyses in the key
engineering disciplines, other than structures for which such
analysis has already been eet&blished. The new t_hnol-
ogy of automated differentiation has a potential for fscili-
tsti_ this development which must also include techniques
for trading accuracy for execution speed in mathematics]
modeling. Finally, the quantum jump in computing speed
promised by the new technology of massively parallel com-
puters is seen as a neoemary part in the subject methodology
development.

The reviewed methodology has the potential for support-
ing designers in their work with nearly instantaneous an-
swers to quantitative "what if" questions. The result will be
a mind-computer, syneri0stic environment in which human
creativity will thrive.
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Figure 1. System of fo_ modules (subsystems) in graph-
theoretic format.

' i2
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4

Figure 4. N-squste Matrix for improved execution
sequence.

Figure 2. System of four moduks in _ N-square Matrix
format.
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Figure 3. Definition of a module for N-mquare Matrix
format.
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Figure 5. N-square Matrix patterns f_r executions:
.) s tmtisi, b)
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Figure S. Dais flow in s hi.-chic syste_ optimizstmn tires of ranse with rmpect to thicknms (normal-
by decomlxmitimx, ized by the largest positive derivative w_e).

12



SENSITIVITY-BASED SYSTEM OPTIMIZATION

F_ 12. F_ of aoa-hierarchic system opfimi_
Uon pro¢_l_.
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Figure 15. A l_m'ic _c tm_3o_ __oa.
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Figure 13. Minimum Tske-of Groes Weight (3_rto) as hmc-
tion of Math number for cases defined in the
text.
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I_ Iteration 4

Figure 14. Unconventional transport aircraft configuration

with three lifting surfaces: the baseline end
after the 4th iteration optimization.

._m

Figure 17. Modules for supemonic transport analysis se-

quenced for L mlnlmum of iter&tive ioope in all

N-equam _trix format.

13



Flex po_ml PERFORMANCEGross weigh!

Fuel wl., groll wL

J AEROOYNAMICS "LDetlecllonl JShape,th_Jmm r Loading;I

Ringl, Mock fuel

/
Fue_wt., gross wt.

WING STRUCTURE
Skin thickness
sparldb

Strains, MmsNs_

Figure 18. SupersomJctrausport analy_s simpli_ed to three
d_p_aee.

IOO0

__ 100

0

0

(_J I I , !

Linear Adv. Euler Navler
Potential Stokes

21. Typical CPU t_e requinnnen_ _ CFD at

Initialdesign

Finaldesign

TSAI-HILL
Criterion

0.00

-0.20
-0.40
-0.60
-0.80
-1.00

FiSure;9. S.penmtctn.Wx_winr. contourplot. of the
Tsar.HiLlcr_d_ val.m forthewinscon_0_
msterisl covers.

lb., I v_g)

2o0oo

1°°°°o lo ao _ 4o so eo

o_ oy_w

Ftm_ 2o. Hi.t_ (_ the _ b_UnS mter_ w_,ht _
the _ proems.

14





• . , , , ,i

Form Approved
REPORT DOCUMENTATION PAGE OMB.o ozo  ru

.... i i nl • :l i

Pu_l( rtllor_i_l burden f_r this ¢OIIGcllon of Ifllormetton ts eat*mated tO iwerl_e 1 _ p_r rc,_0onse, th(ludlnq the tim_ for ,evlewin 9 InstrucU_ts. searching existing diHi _¢rces.

9alherm9 and metntalhmt) the data nelKled, rand ¢O¢l_letifl 9 and revR_wmg the ¢olleclion of ,nfo_matio?. ¢_nd cOmments re_erdi .ng this bwd_ estimate or In, otht_ asioect _f

(oU_tton of information° including suggestiOnS toc reaudng thlt buroe_n.flo WmlmtngtO*_ HelNl_uartert '_¢_rvK_, OtreclotMe Ior InfOrmatiOn Uperetiofls end rapport% lifts Jefflclon
Dev_ Highway. Su_ta | _04. ArlingtOn. VA _2202-4_0Jr. end to the Oflke 0 Managemenl and Budget. PNt)erwork 4_,.K'tMM1 PrOject (O;04-O llMI)o Weshll_iton. _ _)S0|.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE S. REi;()RT"TYPE AND DAT;S COVERED '

, , Ma_. 1992 Technlcal Memorandum
4. TITLE AND SUBTITLE 15. FUNDING NUMBERS

Aircraft Optimization by a System Approach:

Achievements and Trends

L ' ,m

6. AUTHOR{S)

Jaroslaw Sobies zc zanski-Sobieski

7. PERFORMING ORGANIZATION NAME{S) AND ADDRESS(ES'_

NASA Langley Research Center

Hampton, VA 23665-5225

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

505-63-50-06

O.' PERFORMING ORGANIZATION
REPORT NUMBER

I0.SPON$ORINGYMONITORING
AGENCY REPORTNUMBER

NASA TM-107622

'/1. SUPPLEMENTARY NOTES

To be presented at the 18th ICAS Congress, in Beijing, China, on

September 20-25, 1992

12a. DISTR|BUTiON / AVAI'LABILITY STATEMENT

Unclassified - Unlimited

Subject Category 05

13. AOSTRACT(Maximum200words)

, |,

12b. DISTRIBUTION CODE

Recently emerging methodology for optimal design of aircraft treated as a system of

interacting phyiscal phenomena and parts is examined. The methodology is found to

coalesce into methods for hierarchic, non-hierarchic, and hybrid systems all

dependent on sensitivity analysis. A separate category of methods has also evolved

independent of sensitivity analysis, hence suitable for discrete problems.

References and numerical applications are cited. Massively parallel computer

processing is seen as enabling technology for practical implementation of the

methodology.

tt |, ,m

14. SU_ECTT|RMS

Aerospace; aircraft; computers; design; interactive;

optimization; parallel processing; sensitivity system; synthesis

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7S40-Q1-280-S500

tL SE_RITY CLA'_;_;IFICATION Ig. SECURITY CLASSIFICATION
OF THIS PAGE OF ABSTRACT

Unclassified Unclassified

i

15. NUMBER OF PAGES

15
i

i6. PRICE CODE

A03
20. LIMITATION OF ABSTRACT

" Standard Form 2gB'(Rav. 2-8g)
Pr_nbed by ANSI Sad Z3ql-t|
_95-t02


